

CipherKnight™: Revolutionizing Application
Security with White-Box Cryptography

Rafie Shamsaasef
Aaron Woods

August 22, 2024

© 2024 CommScope, Inc. All rights reserved. 2

Table of Contents

Introduction .. 3

What is CipherKnight™? .. 3
Understanding the Need for White-Box Technology .. 3
Key Vulnerabilities and CipherKnight™ Protection Methods .. 4
Benefits of Using CipherKnight™ ... 4

Key features of CipherKnight™ .. 5
Supported Cryptographic Algorithms .. 5
White-Box Chaining ... 5
White-Box Node-Locking ... 6

Node Fingerprinting ... 6
True Random Number Generator .. 6
Custom Key Derivation Function (KDF) .. 7

Use Cases for CipherKnight™ ... 7
Generic Application Environment .. 7
Emerging Application Examples .. 7
Use Cases ... 9

Conclusion .. 10

© 2024 CommScope, Inc. All rights reserved. 3

Introduction

In today's increasingly connected and digitally driven world, securing sensitive data within software applications has never
been more critical. Traditional security measures often rely on hardware security modules (HSMs), operating system
protections, or network security protocols. However, these approaches may not always be viable, especially in untrusted
environments where software is vulnerable to attacks. Enter CipherKnight™, a cross-platform white-box security toolchain
designed to protect cryptographic keys, certificates, and other sensitive data in applications, even when running in insecure or
untrusted environments.

This white paper has outlined the protection needs, features, benefits, and use cases of CipherKnight™, demonstrating how it
can play a crucial role in safeguarding applications across a wide range of industries.

What is CipherKnight™?

CipherKnight™ is a sophisticated white-box security toolchain that protects cryptographic keys and other sensitive data while
implementing standard crypto algorithms. Unlike traditional security methods, CipherKnight™ does not depend on hardware
security, operating system security, or network security. Instead, it integrates protection directly into the application, ensuring
that sensitive data remains secure, even if the surrounding environment is compromised. CipherKnight™ white-box
implementation represents a significant advancement in application security, providing a powerful solution for protecting
sensitive data in environments where traditional security measures may not be sufficient. By embedding security directly into
the application code, CipherKnight™ ensures that critical information remains secure, regardless of the surrounding
environment.

Understanding the Need for White-Box Technology

White-box cryptography is a technique that fundamentally alters a program to ensure that it operates directly on encrypted
and encoded secrets, without ever revealing these secrets in cleartext form. This approach means that even if an attacker has
full visibility and control over the application, they cannot extract any meaningful information from it. By keeping the secrets
always concealed, white-box cryptography protects sensitive data even in hostile environments. White-box cryptography
implementations can be either static or dynamic. Static white-boxes have fixed secrets that are embedded within the
application during the build process, making them resistant to extraction. On the other hand, dynamic white-boxes are more
flexible—they can accept encoded secrets during runtime, allowing for a more adaptable security approach.

In most cases, White-box cryptography is implemented to protect cryptographic implementations in various applications
running on open devices such as smartphones, PCs, and tablets when the developer needs to achieve the highest level of
security without relying on elements of secure hardware or operating system being available. These applications store and
process private and confidential data and can benefit greatly from white-box cryptography implementations over traditional
methods with have well known attack surfaces. Data privacy is an integral aspect of application management and
development, leveraging white-box based implementations to protect critical data totally mitigates the risk associated to the
loss of that data.

CipherKnight™ white-box cryptography is table-based transformations. This technique involves combining three random
bijections with the application’s functions. These combinations are then expressed as lookup tables (LUTs) of size 256x256,
effectively concealing the underlying secrets and other sensitive state information. By using these tables, white-box
cryptography ensures that the implementation remains secure and resistant to reverse engineering and side-channel attacks
even when under direct observation.

Traditional security mechanisms often rely on external factors such as hardware security modules (HSMs), trusted execution
environments (TEEs), or network security measures. While effective in some scenarios, these approaches can fall short in

© 2024 CommScope, Inc. All rights reserved. 4

environments where the software is exposed to potential threats, such as mobile devices, IoT devices, and cloud applications.
CipherKnight™ White-Box technology addresses these gaps by embedding security directly within the software, making it
resilient to attacks even when external protections are compromised.

Key Vulnerabilities and CipherKnight™ Protection Methods

CipherKnight™ is designed to mitigate a range of vulnerabilities that are commonly exploited in modern software applications.
One of the primary challenges in application security is ensuring that sensitive data remains protected even when the
application is running in an untrusted environment. CipherKnight™ addresses this challenge head-on by embedding protection
mechanisms directly into the application code. Below is a summary of key vulnerabilities and the protection methods provided
by CipherKnight™:

Vulnerability Protection Methods

Insecure execution environment Implement a secure white-box security context

Weak/low platform security or lack of HSM/TEE Establish a software root-of-trust with a node-locked white-box

Insecure handling of highly sensitive data Encrypt or white-box encode valuable data and keys at all times

Black-box cryptographic operations that expose keys
and other sensitive data

Utilize corresponding white-box cryptographic operations with
encrypted or encoded keys and data

Unauthorized access privileges Move access control to the white-box domain

Bypass of licensing and other controls Use of white-box based licensing system, such as KnightLicense

Credential extraction vulnerability Utilize node-locked white-boxes to store and manage credentials

Insecure communication paths between applications
or components

Utilize white-box chaining to communicate sensitive data

Benefits of Using CipherKnight™

• Enhanced Security: CipherKnight™ offers superior protection for sensitive data, even in untrusted environments.

• Cross-Platform Support: Developers can integrate CipherKnight™ white-box source code across various platforms
without sacrificing security.

• Scalability: CipherKnight™ can be deployed in applications of any size, from small mobile apps to large enterprise
systems. The size and speed optimization allows for flexibility needed to balance security vs performance.

• Ease of Integration: CipherKnight™ is designed to be easily integrated into existing applications, minimizing
development overhead.

© 2024 CommScope, Inc. All rights reserved. 5

Key features of CipherKnight™

• Cross-Platform Compatibility: CipherKnight™ white-box primitives are generated as native C/C++ source code and
can be integrated into applications across different platforms, ensuring consistent security regardless of the
underlying operating system or hardware.

• Data Locking: Sensitive key and data are encoded and can be locked to specific devices or subsystems, preventing
unauthorized access and ensuring that the data can only be used in its intended environment.

• Algorithm Protection: Table-based white-box transformations compose random bijections with an application's
functions. These compositions are emitted as lookup tables (LUTs) to conceal the underlying secrets and other state
values in the white-box implementation.

• High-Level Security: By embedding security directly within the application, CipherKnight™ provides a high level of
protection against various threats, including reverse engineering and tampering.

Supported Cryptographic Algorithms

CipherKnight™ supports a wide range of cryptographic algorithms, ensuring robust protection for various applications:

White-box Algorithm Description

AES 128, 256 • Modes: CBC, CCM, CMAC, CTR, ECB, GCM
• Functions: Encryption, Decryption, Key Generation

CSPRNG • Functions: Secure random number generation

DH 2048 • Functions: Key Agreement, Key Generation

ECC 256, 384, 521 • Functions: Sign, Verify, Key Agreement, Key Generation

RSA 2048, 4096 • Functions: Encrypt, Decrypt, Sign, Verify, Key Agreement, OAEP, Key Generation

SHA 256, 384, 512 • Functions: Hash, HMAC, HKDF, PRF

TRNG • Functions: Generation of true random numbers

White-Box Chaining

In cryptography, the secure management and transition of cryptographic keys are paramount. CipherKnight™ addresses this
need by establishing a robust key ladder mechanism within its white-box environment. This key ladder not only enhances
security but also allows the integration of various salts or sources of entropy into the key, further strengthening its resistance
against attacks. By injecting randomness and unpredictability at every step, CipherKnight™ ensures that each key derived in
the process is unique and highly secure.

A critical aspect of this architecture is its ability to transition between keys seamlessly within the white-box chain while
keeping intermediate keys completely concealed. This is essential for maintaining the integrity and confidentiality of the
cryptographic process, particularly when executing complex operations like SSL/TLS handshakes. For example, CipherKnight™
enables the chaining of multiple cryptographic algorithms, such as RSA or ECC ciphers with Diffie-Hellman (DH), Digital

© 2024 CommScope, Inc. All rights reserved. 6

Signature Algorithm (DSA), Secure Hash Algorithm (SHA), and Advanced Encryption Standard (AES), all while ensuring that
intermediate keys or sensitive data are never exposed.

The flexibility of CipherKnight™ is further demonstrated by its support for various key mixture combinations. Whether
combining RSA with Diffie-Hellman (RSA-DH) or using Elliptic Curve Diffie-Hellman (ECDH) to derive a shared secret,
CipherKnight™ allows users to customize their cryptographic processes to meet specific security requirements. Once a shared
secret is derived, it can be used to generate an AES key, which is then employed to encrypt communications securely. This
capability not only enhances security but also allows for the creation of complex, multi-layered encryption strategies that are
resilient against sophisticated attacks.

White-Box Node-Locking

White-box Node-Locking is a critical feature of CipherKnight™ technology, providing a robust mechanism to tie the white-box
implementation to a specific, secure node. This approach significantly reduces the risk of code-lifting attacks and ensures that
sensitive cryptographic operations and data remain protected, even in the event of an attempted unauthorized migration.
Node-Locking restricts the operation of a white-box implementation to a specific node, thereby preventing its use on any
unauthorized systems. A node, in this context, is not limited to a single hardware device. It can refer to a variety of
environments, including:

• Hardware Devices: Physical computing devices such as desktops, laptops, servers, or mobile devices.

• Containerized Environments: Isolated environments created using container technologies like Docker, ensuring that
the white-box implementation runs only within a specific container setup.

• Virtual Machine Instances: Virtualized environments, where the white-box is locked to a specific virtual machine
configuration.

• Combinations of Application, Customer, and End-User Identifiers: The node can also be defined by combining
specific software or application identifiers, customer-specific elements, and end-user data to create a unique
operating environment.

Node Fingerprinting
The developer configures the definition of a node based on selected data elements that together create the node's
"fingerprint." This fingerprint is a unique identifier for the node and is crucial in ensuring that the white-box implementation
functions only in the intended environment. The fingerprint could include:

• Hardware Identifiers: Such as CPU IDs, MAC addresses, or storage device serial numbers.

• Software Identifiers: Including OS version, installed application IDs, or specific environment variables.

• User or Customer Data: Information such as user credentials, customer IDs, or other personalized data that can help
uniquely identify a node.

By leveraging this fingerprint, CipherKnight™ ensures that even if the white-box implementation is copied and attempted to
be run on a different node, it will not function. This capability is essential in mitigating code-lifting attacks, where
unauthorized entities try to run the software outside of the controlled, secure environment it was designed for.

True Random Number Generator

CipherKnight™ implements a true random number generator (TRNG) within its white-box cryptographic environment, utilizing
advanced mixing functions rooted in "shapeless" quasigroup algebras. These algebras are composed of operations that are
non-commutative, non-associative, and non-linear, which significantly enhance the unpredictability and randomness of the
generated numbers. By leveraging these mathematical properties, CipherKnight™ ensures that the random numbers produced

© 2024 CommScope, Inc. All rights reserved. 7

are highly resistant to prediction or reverse engineering, providing a robust foundation for secure cryptographic processes.
This innovative approach to TRNG design within the white-box framework further strengthens the security and integrity of the
overall cryptographic system while compliant to NIST TRNG requirements.

Custom Key Derivation Function (KDF)

CipherKnight™ offers support for custom key derivation functions (KDFs) within a white-box cryptographic framework. This
feature allows users to incorporate their own unique “secret sauce” into the KDF, enhancing the security and flexibility of the
white-box ciphers. By leveraging the chaining capabilities of CipherKnight, users can construct key ladders that integrate
various ciphers, all while ensuring that no intermediate keys are exposed during the process. This powerful combination of
white-box KDF and chaining technology enables the creation of complex, multi-layered cryptographic systems with enhanced
protection against key extraction and reverse engineering.

Use Cases for CipherKnight™

This section provides a practical overview of how white-box technology can be applied to address common security
challenges, making it easier for readers to understand the real-world benefits of the solution.

Generic Application Environment

• Mobile Applications: In the mobile landscape, applications often run on devices that are outside the control of the
developer, making them susceptible to a wide range of attacks. CipherKnight™ ensures that sensitive data within
these applications remains secure, regardless of the device's security posture.

• IoT Device Applications: Internet of Things (IoT) devices frequently operate in environments where physical and
network security cannot be guaranteed. CipherKnight™ secures sensitive data within these devices, protecting them
from potential threats.

• Cloud-Based Applications: Cloud environments, while offering scalability and convenience, can also introduce
security vulnerabilities. CipherKnight™ ensures that sensitive data in cloud-based applications is protected, even
when traditional security measures are insufficient.

Emerging Application Examples

The following emerging application examples highlight the critical importance and wide applicability of white-box solutions
across various markets. These examples demonstrate how white-box solutions are increasingly vital across various markets,
providing enhanced security and protection in scenarios where traditional methods may fall short.

1. IoT Chip and Application Security – With the widespread availability of System on Chip (SoC) technology and
accessible manufacturing processes, the integration of white-box implementations has become a viable alternative to
hardware security modules (HSMs). This approach allows developers to achieve robust security in their IoT designs
without the need to include an HSM in the bill of materials (BOM). As a result, the barrier to entry for innovative IoT
solutions is significantly lowered, enabling greater flexibility and cost efficiency without compromising on security.

2. Contactless Payments with NFC - Today, many mobile payment applications utilize Near Field Communication (NFC)
technology to transform standard smartphones into contactless payment terminals. This capability can be particularly
beneficial for companies with limited resources, as it eliminates the need to invest in specialized point-of-sale
systems. However, security remains a primary concern in these implementations. Full software-based white-box
solutions offer an effective means of achieving the necessary security while maintaining low power consumption, all
without the need for dedicated hardware security modules (HSMs).

© 2024 CommScope, Inc. All rights reserved. 8

3. Medical Applications - Most data on medical devices is encrypted and transmitted using strong encryption protocols.

Additionally, this medical data is often signed to ensure its integrity. Typically, the encryption keys are securely stored
within the medical device and on cloud servers. However, applications or programs running on smartphones or
desktop PCs represent the weakest links in terms of security. White-box cryptography addresses this vulnerability by
securing both the decryption and signing processes, ensuring that medical data and records are protected against
theft or manipulation by attackers. Moreover, new micro medical IoT devices, which operate under tight resource
constraints, can benefit from software-based white-box implementations. These solutions provide the necessary
cryptographic security without the need for hardware security modules (HSMs), making them ideal for resource-
limited environments.

4. Securing the Software Supply Chain – Whether in a CI/CD pipeline or on the floor of a chip manufacturing plant, a
white-box security implementation plays a crucial role in detecting and preventing tampering with critical intellectual
property (IP) or software deployments. This is achieved by securing access to sensitive assets and, in cases where
physical tampering attempts are made, by detecting changes in binaries or signed code.
In the CI/CD pipeline, white-box security can be integrated to protect the integrity of software deployments. By
embedding cryptographic keys and sensitive operations within the software in a way that they are obfuscated and
never exposed in plaintext, white-box security ensures that even if the build environment is compromised, attackers
cannot easily extract or manipulate critical information. On the manufacturing floor, where physical access to
hardware and software is more feasible, white-box security can prevent tampering by making it extremely difficult to
alter the protected crypto algorithms and secrets embedded in software.
In both environments, white-box security acts as a robust defense mechanism, not only preventing unauthorized
access but also providing a critical layer of detection for any attempts to tamper with the protected assets. This
ensures that the integrity and security of critical IP and software deployments are maintained throughout the entire
lifecycle, from development to production.

5. Secure Digital Signatures for Identity Theft - Normally, digital signatures are used for security purposes as they
facilitate undeniable user consent even for remote entity authentication. Traditionally, they have been employed to
ensure that the identity of the signer is verified and that the signed content has not been altered. Recently, digital
signatures have also enabled software-only solutions for tasks such as remote access control and contract signing.
However, as these use cases expand, the risk of identity theft and unauthorized sharing of access rights becomes a
significant concern.
By adopting a white-box approach to digital signatures, the security of all parties involved is substantially enhanced.
White-box cryptography ensures that the cryptographic keys and processes involved in generating digital signatures
are protected within the software itself. This means that even if an attacker gains access to the device or application,
they cannot easily extract the keys or manipulate the signing process. Consequently, white-box security prevents
identity theft by safeguarding the signer’s credentials, and it also deters the voluntary sharing of access rights, as the
cryptographic operations are securely encapsulated within the software.

6. Streaming Platforms - The rapid rise of streaming services, often referred to as above-ground video services, has
presented a significant challenge for those responsible for protecting video content from hackers while
simultaneously ensuring that legitimate users enjoy seamless access and a user-friendly experience. This challenge is
particularly relevant for both the applications and streaming devices utilized by service providers to deliver content to
their subscribers. Hackers constantly attempt to intercept, duplicate, or redistribute premium content without
paying, which can result in substantial financial losses for service providers. To counter these threats, robust white-
box cryptography security measures are required that can protect the content and associated keys at every stage of
its delivery while also maintaining the integrity and performance of the service.

© 2024 CommScope, Inc. All rights reserved. 9

For providers, the goal is to implement security strategies that are invisible to the user but effective in preventing
unauthorized access. This includes the use of encryption, secure key management, and other technologies that
safeguard the content from the point of origin to the moment it is viewed by the subscriber often in unsecure
devices. CipherKnight™ white-box technology offers device and platform independent protection required for such
environment.

Use Cases

CipherKnight™ white-box technology addresses several critical security challenges across various scenarios. Below are some
specific use cases that highlight the effectiveness of the technology regardless of the specific application or target
environment:

1. Insecure Execution Environment

o Challenge: Running sensitive operations in an insecure environment can expose critical data and algorithms
to attacks.

o Solution: Implementing a secure white-box security context ensures that sensitive operations remain
protected even in potentially compromised environments.

2. Weak/Low Platform Security or Lack of HSM/TEE

o Challenge: Platforms lacking Hardware Security Modules (HSM), or Trusted Execution Environments (TEE)
can leave cryptographic operations vulnerable to attacks.

o Solution: Establishing a software root-of-trust using a node-locked white-box ensures that cryptographic
operations are protected without relying on hardware-based security measures.

3. Insecure Handling of Highly Sensitive Data

o Challenge: Sensitive data that is not securely handled can be exposed during processing or storage.

o Solution: By ensuring that all valuable data and keys are encrypted or white-box encoded at all times,
CipherKnight™ technology protects sensitive information from unauthorized access.

4. Broken Cryptographic Operations

o Challenge: Cryptographic operations that expose keys or other sensitive data can be vulnerable to attacks.

o Solution: Utilizing corresponding white-box cryptographic operations with encrypted or encoded keys and
data ensures that these operations are secure, even if the cryptographic operation itself is exposed.

5. Unauthorized Access Privileges

o Challenge: Unauthorized access to sensitive data or operations can lead to significant security breaches.

o Solution: Moving access control to the white-box domain ensures that only authorized entities can access or
perform sensitive operations.

6. Bypass of Licensing and Other Controls

o Challenge: Attackers may attempt to bypass licensing controls or other restrictions to exploit software
without authorization.

o Solution: Utilizing a white-box based licensing system, such as KnightLicense, ensures that licensing controls
are enforced, even in potentially compromised environments.

© 2024 CommScope, Inc. All rights reserved. 10

7. Credentials Extraction Vulnerability

o Challenge: Credentials that are not securely stored or managed can be extracted by attackers, leading to
unauthorized access.

o Solution: Storing and managing credentials within node-locked white-boxes mitigates the risk of credential
extraction, ensuring that sensitive credentials remain secure.

8. Unsecure Cryptographic Algorithms

o Challenge: The use of weak or outdated cryptographic algorithms can compromise the security of sensitive
operations.

o Solution: CipherKnight™ white-box technology supports modern, secure cryptographic algorithms such as
AES, RSA, and ECC, ensuring that cryptographic operations are both secure and compliant with current
standards.

Conclusion

CipherKnight™ offers a sophisticated solution to these challenges through its White-Box technology, which embeds security
directly into the software, ensuring that sensitive data is protected regardless of the operating environment. CipherKnight™
offers a robust solution by securing sensitive information directly within the application, eliminating the need to rely on
external security measures.

CommScope CipherKnightÔ white-box suite enables organization to protect keys, algorithms and secrets in unsecure and
untrusted execution environment.

https://www.pki-center.com/solutions/code-obfuscation

