

INTRODUCTION

The CommScope PKI Center™ provides a variety of security-related services spanning several different
markets. Our security services are provided to network and service operators as well as manufacturers
and are utilized in numerous ecosystems. The main security offerings include:

• Software platform security services, including secure code signing and debugging services for
product software platforms and application code.

• Operation of certificate authorities (CAs) that issue digital certificates for high-volume
manufactured products (such as cable modems, routers, set-top boxes and mobile phones), as
well as for high-value infrastructure applications and server machines.

• Generating digital certificates and cryptographic keys or obtaining secure data from external
licensing authorities such as CableLabs®, Digital Transmission Licensing Administrator (DTLA),
Digital Content Protection (DCP), Google®, Netflix®, etc., as well as packaging, secure delivery
and installation of these data into products in factories (including OEM/ODM) and repair
centers.

• On-line Personalization Update System for creation and secure delivery of renewable security
and personalization data to fielded devices on a mass scale.

• Security consulting to system engineering, product management and development teams about
network, application, and platform security for both secure and non-secure products.

This whitepaper describes the secure code signing system PRiSM (Permission Rights Signing Manager)
operated by the CommScope PKI Center. Code signing could be very complicated to someone who is
just trying to protect the code he/she develops. There are different types of signing, various formats of
the code image, signing keys and verification keys involved, and many other signing parameters. Even
for the same product, different levels of code are likely to have totally different settings in each of
these aspects.

Our WebTrust-audited ability to host CAs and our secure process standards allows software and device
vendors to outsource this function with confidence. This allows these vendors to focus their energy
and resources on their customers and product development. We have been providing secure code
signing services since 2002, supporting a wide range of products and various use cases.

Permission Rights Secure
Code Signing Service

https://www.pki-center.com/portal/

CommScope PKI Center

SOFTWARE SECURITY LIFE CYCLE
Integrity-protected software typically goes through four stages from creation to execution as
illustrated in the following figure. It includes software development, software build, code signing, and
execution environment. The software development system includes the software source control
system. It allows developers to design and implement software based on functional requirements. The
software build system takes the source code developed, compiles and combines to generate a
software package to be ready for signing. The software development system and build system may be
combined as a single system, but there are also cases where they are maintained and hosted
separately. The resulting software package is then submitted to the code signing system for signing.
Either the code signing system, or the software build system generates the final signed package, which
is then deployed to the target execution environment. In the target execution environment, the
signature of the software package is verified before it is accepted for execution.

All four stages described must be secured to prevent attackers from compromising the integrity of the
software. Adversaries typically attack the weakest link in the system. In this paper we are going to
discuss a secure code signing system in more detail; however, the security of the other stages must
also be adequate. In other words, having a secure code signing system without protecting the software
build process or target execution environment will only provide a false sense of security.

In December 2020, a group of suspected nation-state cyber attackers managed to compromise the
SolarWinds software development platform and injected SUNBURST malware into properly signed
Orion products, allowing unauthorized access to networks of a wide range of government and private
sectors [1]. It is interesting to note that the infected software package is legitimately signed. This
incident demonstrates that securing a software development and build system is as important as
securing a code signing system.

Shortly after the discovery of the SolarWinds SUNBURST attack, another malware named SUPERNOVA
was also reported[2]. In this case, however, the malicious DLL module is not part of a signed
SolarWinds package. Instead, the SUPERNOVA malware is designed to masquerade as a legitimate
SolarWinds web service. Since the DLL module is not signed, it will only be allowed to execute if the

https://www.pki-center.com/portal/

CommScope PKI Center

target environment does not enforce signature verification. Such unsigned malware attacks are
blocked when code signature verification is enforced. It is therefore important to ensure that only
properly signed software is accepted in the target platform.

NEED FOR CODE SIGNING

Software running on any electronic devices or platform are designed and developed to serve its
intended purposes. A mobile banking application, for example, allows a user to manage his/her
banking account online, communicating securely with the online banking service provided by the bank.
A video streaming application communicates with the streaming servers to get video content and
playback on the client device. A 5G virtual network function includes code developed to manage the
bandwidths or other services of the mobile clients. It is crucial that these applications remain intact as
they were released by their publishers, not modified, replaced or corrupted by anyone intentionally or
unintentionally. To ensure that only legitimate software or scripts are executed on a device or
platform, a digital signature is generated over an executable using a private signing key. The signature
and the executable are packaged together for delivery to the target platform. In order to ensure that
the code is not modified, this digital signature is verified on the target platform using the
corresponding verification key.

There are in general two main approaches where signed code can be utilized: Secure Code Download
and Secure Boot. With Secure Code Download, when a code image is downloaded to a device, its
signature is checked before the device will accept the download and save it locally into persistent
storage. This prevents any code download that is not signed properly with the correct signing key.
When the device reboots, however, the code signature may not be checked again. For devices with
silicon that do not support secure boot, limiting physical access to the device and hardening against
remote installation of unauthenticated software remotely (including of course, implementing secure
code download) may be the best option available. Some older cable modem products, for instance, fall
into this category.

However, sophisticated attackers can and do often find a way to bypass code authentication and install
malicious attack software. A few of the many examples that allow malicious software to be installed
into IoT (Internet of Things) and mobile devices without physical access are described in [3], [4] and [5].
An example where physical access or close proximity is initially required for hacking a smart TV device
is described in [6].

The limitation of secure code download is the lack of authentication of software that has already been
installed on a device. If an attacker gains access to the device and manages to modify the code
responsible for verifying the code download signature, then any code can be downloaded and
accepted. Alternatively, if a code signature is only checked after a download, and not every time
software is loaded from internal storage and executed, an attacker with access to the device may be

https://www.pki-center.com/portal/

CommScope PKI Center

able to overwrite persistent storage with a malicious unsigned code image. Secure boot, on the other
hand, enforces that a device is booted from trusted software all the way from boot code, to platform,
OS, and applications.

In an ideal scenario, a device with secure boot will start up from hardware-protected boot code. For
instance, the boot code may be programmed into read-only memory that is not modifiable unless
someone physically swaps out the memory module. The boot code includes verification code that will
load and verify the next boot stage, using an embedded verification key that cannot be modified. From
then on, each boot stage is responsible for verifying the next software layer before executing it. This
forms a strong chain of trust for all the software running on the device.

Code signing normally utilizes asymmetric cryptography, such as RSA or elliptic curve algorithms. There
is a private signing key and a public verification key. The signer responsible for signing the code owns
the signing key, while the verification key is to be used by the verification software. The verification key
needs to be integrity-protected on the target platform, so that it cannot be modified or replaced with
another key. The signing key needs to be kept confidential. If it is compromised, the attacker can use it
to sign any code and defeat the purpose of code signing altogether.

SECURE CODE SIGNING SYSTEM

As explained above, it is of utmost importance to protect the code signing key. If the code signing key is
stored as a data file in a developer’s laptop, it is susceptible to exposure and cloning. Multiple copies of
the signing key may be created, and it will be impossible to determine who actually used it to sign a
given version of the code. Even if the signing keys are well protected, code signing infrastructure with
inadequate physical, network or system security may be susceptible to attacks. If an attacker manages
to hack into the code signing system, even though they may not be able to extract the keys, they may
still be able to direct the system to sign malicious code as they wish.

PRiSM’s cloud-based code signing system architecture addresses these security issues. The system
utilizes a cluster of centralized servers with a set of best-in-class hardware security modules (HSMs)
and multiple layers of physical and network security. All code signing and encryption keys are
protected by HSMs. All network devices and physical hosts are hardened according to the latest
security guidelines in the industry. Regular and extensive network scanning and penetration testing are
in place to minimize any remaining vulnerabilities for an attacker.

A conceptual view of the PRiSM code signing system is shown in the figure below. The system consists
of components that manage the organizations, users, and signing configurations (as explained further
in this paper). Crypto operations are performed in HSMs, which host and protect the code signing and
encryption keys. For ease of use, PRiSM provides both a human GUI (graphical user interface) as well as

https://www.pki-center.com/portal/

CommScope PKI Center

machine interfaces. It also maintains transaction logs for all signing operations performed, which
provides traceability and accountability.

On the target device or platform, signed code images of various stages are verified in sequence to
ensure authenticity. For example, boot code is verified using hardware-protected firmware, which
verifies the platform code. The platform code in turns verifies the applications. Apart from code
integrity protection, secured access to debugging capabilities may be needed during development and
troubleshooting, to allow features to be turned on or off. PRiSM provides a way to control and manage
secure debugging access as described in more details in this paper.

PRiSM is designed with reliability in mind and includes failover and high availability features, ensuring
that the code signing system is available whenever it is needed. PKI Center’s geographically-diverse
disaster recovery and business continuity plan further ensures system availability in case of natural
disasters and other emergency scenarios.

Nowadays, the need for code signing and the importance to protect the signing keys are well
understood. However, it may not cost effective for every business to invest the resources to build their
own secure code signing infrastructure just to protect a handful of signing keys. PKI Center’s PRiSM
provides a turnkey solution for hardware and software partners to manage their code signing needs.
Our WebTrust-audited ability to host CA’s and our adherence to the highest levels of security allow
software and device vendors to outsource this function with confidence. This allows our partners to
focus their energy and resources on their customers and product development.

https://www.pki-center.com/portal/

CommScope PKI Center

Versatile Crypto Support

PRiSM supports a wide variety of standard cryptographic algorithms. Currently (last revised 2020)
supported code signing algorithms and signature formats include RSA PKCS #1 v1.5, RSA-PSS, ECDSA,
PKCS #7, HMAC-SHA1 and HMAC-SHA256. Supported encryption/decryption algorithms include RSA
PKCS #1 v1.5, RSA-OAEP and AES. Supported hash algorithms include SHA-1, SHA-2, and SHA-3 families.
PRiSM also supports many industry-standard code signing formats such as Android APK signing, JAR
signatures and Microsoft Authenticode. Support for new code signing standards are constantly being
added as the needs arise. For example, UEFI (Unified Extensible Firmware Interface) secure boot and
Docker container signing are on PRiSM’s roadmap.

In addition to evolutions to the above algorithms and formats, PRiSM can and does perform code
encryption and signing according to customized or proprietary formats which are often required by
secure SoCs and microcontrollers. We have in-depth understanding in the security architecture and
code signing formats of many vendors including Broadcom, Infineon, Intel, MTK, STMicro, TI, and Xilinx.
With the expertise and experience, we are ready to work with new code signing requirements our
customers may need.

Secure Debugging Access

In addition to signing and encrypting code images, PRiSM provides support for secure debugging access
by developers, testers and integrators. During the debugging or development phase of a product, some
features may need to be temporarily turned on or off. For example, verification of applications may
need to be turned off in order to debug an issue without having to sign the code every time it is
modified/tweaked during the process. As another example, some physical ports (e.g. Ethernet port)
may be disabled on a device by default. These ports may need to be turned on during debugging but
not for production use by the end user. PRiSM provides a way to deliver a signed object, called the
Access Token, that allows certain features to be turned on or off temporarily. The Access Token is tied
to the device and has a configured lifetime and/or reboot count. Access Token configurations are
enabled by a PRiSM Administrator at the direction of the Product Manager (PRiSM customer) to allow
developers to perform debugging without compromising the security of production devices.

In some cases, a device may have a JTAG port that facilitates debugging. The JTAG port is typically
disabled in production and requires a password for unlocking. PRiSM can also deliver the unique JTAG
password via the Access Token in an encrypted form. The JTAG password does not appear in the clear
during transmission nor to the developer. This keeps the JTAG password confidential and therefore
prevents possible compromise.

https://www.pki-center.com/portal/

CommScope PKI Center

Easy Management, Better Control
PRiSM is a cloud-based code signing system which can control and manage many crucial security
parameters. For example, there could be a security version number (or a timestamp) associated with
the code for rollback prevention. When there is a major security vulnerability discovered in a version of
the code, a new version is developed to address the issue. Anti-rollback control allows a software
security version to be incremented such that code with a lower version would not be allowed to
execute. One way to sign code with a security version may be for a developer to include security
version into the code header and then submit to a code signing server for signing. Alternatively,
security version number may be inserted or otherwise verified by the code signing system, making sure
that only the expected value is used before signing. This ensures tight and traceable control over
security-sensitive parameters.

Another example of a security parameter that can be controlled this way is a model identifier or
market identifier. Each different product model or market is assigned a different value. Code signed
with a certain model or market identifier can only be accepted on a target with the matching value.
This provides a way to segregate code developed for different product models or markets or
customers.

PRiSM organizes different code signing parameters using a hierarchical structure of signing
configurations. Customers have the freedom to use this flexible structure to manage different project,
product line, product models, market segments, different layers of code, and so on. At the bottom of
the hierarchy are the actual signing configurations, each of which is set up for a specific target use
case. A configuration defines the type and format of signing, the code signing and/or encryption keys
are to be used, and any other parameters that are needed in the specific code signing process.

User and Role Management
There are three user roles defined within the PRiSM code signing system: administrators, managers,
and users.

PRiSM Administrators are responsible for the code signing format, keys used, and any associated
parameters. Code signing configurations are typically defined at the beginning of a project.
Occasionally, there may be a need to update some of the configuration parameters, e.g., incrementing
the secure version number. These changes are handled by PRiSM Administrators and are not editable
by other users. This prevents any intentional or unintentional modifications of the signing parameters
and enforces strict control of the signing configurations.

PRiSM Managers (CommScope or customer employee designated by the customer) assign or revoke
user rights signing privileges to PRiSM configurations for users within their organization. Typically, a
team lead or a manager is the most familiar with the software development tasks assigned to each
team member and his or her corresponding code signing needs.

https://www.pki-center.com/portal/

CommScope PKI Center

PRiSM Users are the actual developers that submit code for signing to the PRiSM system under the
signing configuration they are authorized to use. The parameters needed for a signing operation are
already defined within a PRiSM configuration. The user only needs to select the pre-defined
configuration and submit the code that needs to be signed. A user will only be shown the signing
configurations that he/she is authorized for. This not only enforces the separation of different vendors,
groups, products, and projects, but also makes it simple and straightforward for users to sign code.

The PRiSM role separation allows for simple and effective user and signing configuration management.

Privacy Protection
PRiSM provides secure code signing for multiple vendors while maintaining isolation and segregation
between different parties. PRiSM Managers and Users are only able to access signing configurations
and reports belonging to their organizations. CommScope personnel that are not providing PRiSM
support, including CommScope’s top management, are not permitted to access PRiSM customer
information without explicit approval from the customer involved. Signing keys, configurations, user
activities are all protected and restricted to authorized parties.

In most cases, a code hash is computed locally inside a browser or a PRiSM client application and then
submitted to PRiSM in an automated manner for code signature generation; the original code image is

https://www.pki-center.com/portal/

CommScope PKI Center

not uploaded to PRiSM. Even where the full code image needs to be uploaded, PRiSM will not store it
beyond the code signing operation. Once a code signature is generated, PRiSM will erase the original
image. Only a hash of the original image is archived for auditing purposes.

Different Interfaces for Different Needs
PRiSM supports multiple interfaces for code signing, including an interactive browser-based interface
and two automated machine-to-machine (M2M) interfaces. With the browser-based interface,
registered users are issued secure hardware tokens for generating one-time passcodes (OTPs) for login.
A user can log into PRiSM with any major browser, using a PIN and an OTP generated by the secure
hardware token as credentials. PRiSM provides a simple GUI for users to submit code for signing or
encryption. Users will only see the signing configurations for which they are authorized. The same
browser-based interface to PRiSM provides administrative functions. PRiSM Managers use the GUI to
grant or remove signing privileges to users for each signing configuration that they manage.

To support scenarios such as nightly software builds, PRiSM provides two different automated M2M
interfaces, eliminating the needs for human intervention. An M2M interface uses a USB-based
hardware crypto token issued to a machine client for authentication. A Java-based code signing client
interacts with the crypto token and handles all communications with the server. Simple command line
interface of the code signing client allows easy integration with build scripts for full automation. This
provides a turnkey solution for code signing automation. Use of hardware crypto tokens provides a
high level of trust for client identity.

In some cases, the use of hardware crypto tokens may not be feasible or required, such as for a cloud-
based code signing client. For such cases, PRiSM also provides a REST API for code signing. A digital
certificate is issued to the client, which will be used for client authentication to the PRiSM server over
the REST API. The API is simple to use and straightforward to implement.

Audit Trail and Reporting

One of the major advantages of using a code signing system is to maintain an audit trail for all code
signing activities, ensuring that every act of code signing is accounted for. For every code signing
operation performed, PRiSM records information including who or which client machine (in the case of
machine-to-machine code signing) submitted the code, when the signing took place, what type of code
signing and/or encryption (as indicated by the configuration) and which key and parameters were
used. PRiSM records a message digest of the code submitted for each PRiSM transaction. If later a
piece of signed code turns out to contain security vulnerabilities or other critical software bugs, the
code’s signature can be traced back to the original signer.

PRiSM also provides extensive reporting options, including user/signer activity reports, usage reports
by configuration or by company. Such reports are valuable to project leads and managers in identifying

https://www.pki-center.com/portal/

CommScope PKI Center

any abnormal or suspicious PRiSM usage that may require further investigation. A couple of sample
reports are shown below. The first one is an activity log that shows actions performed within a time
period. The second one is a summary usage report that shows number of transactions per operation
type within a time period.

https://www.pki-center.com/portal/

CommScope PKI Center

SUMMARY

CommScope PKI Center’s PRiSM is a unique world-class code signing system, providing code signing
services to many companies for different kinds of devices, platforms and chips. We support a wide
range of code signing and encryption standards and custom formats. We have flexibility to support any
new customized code encryption and signing formats that may be required for a particular hardware or
software platform, or for an ecosystem. The PRiSM team is ready to work with our customers to
recommend and design a format that best suits their needs.

We provide easy and 24×7 reliable access with both an interactive web portal as well as automated
interfaces, anytime, anywhere via the Internet. Its centralized and secure management and protection
of signing and encryption keys ensure that our customers’ valuable assets are very well protected.

REFERENCES

[1] Highly Evasive Attacker Leverages SolarWinds Supply Chain to Compromise Multiple Global Victims
With SUNBURST Backdoor, https://www.fireeye.com/blog/threat-research/2020/12/evasive-
attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor.html

[2] SUPERNOVA: A Novel .NET Webshell, https://unit42.paloaltonetworks.com/solarstorm-supernova/
[3] Malicious Apps Bypass Security Tools to Steal Data, https://duo.com/blog/malicious-apps-bypass-

security-tools-to-steal-data, Jan 20, 2016.
[4] Hacking Team’s evil Android app had code to bypass Google Play screening,

https://arstechnica.com/information-technology/2015/07/hackingteams-evil-android-app-had-
code-to-bypass-google-play-screening/, July 16, 2015.

[5] Unsecured IoT: 8 Ways Hackers Exploit Firmware Vulnerabilities,
https://www.darkreading.com/risk/unsecured-iot-8-ways-hackers-exploit-firmware-
vulnerabilities/a/d-id/1335564, Aug 27, 2019.

[6] Hacking an Android TV in 2 minutes, https://medium.com/@drakkars/hacking-an-android-tv-in-2-
minutes-7b6f29518ff3, Nov 17, 2019.

© 2021 CommScope, Inc. All rights reserved. COMMSCOPE, the COMMSCOPE LOGO and PKI Center
are trademarks or registered trademarks of CommScope, Inc. and/or its affiliates in the U.S. and may
be registered in other countries. CableLabs is a registered trademark of Cable Television Laboratories,
Inc. Google is a registered trademark of Google LLC. Netflix is a registered trademark of Netflix, Inc.
All other trademarks are the property of their respective owners.

https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor.html
https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor.html
https://unit42.paloaltonetworks.com/solarstorm-supernova/
https://duo.com/blog/malicious-apps-bypass-security-tools-to-steal-data
https://duo.com/blog/malicious-apps-bypass-security-tools-to-steal-data
https://arstechnica.com/information-technology/2015/07/hackingteams-evil-android-app-had-code-to-bypass-google-play-screening/
https://arstechnica.com/information-technology/2015/07/hackingteams-evil-android-app-had-code-to-bypass-google-play-screening/
https://www.darkreading.com/risk/unsecured-iot-8-ways-hackers-exploit-firmware-vulnerabilities/a/d-id/1335564
https://www.darkreading.com/risk/unsecured-iot-8-ways-hackers-exploit-firmware-vulnerabilities/a/d-id/1335564
https://medium.com/@drakkars/hacking-an-android-tv-in-2-minutes-7b6f29518ff3
https://medium.com/@drakkars/hacking-an-android-tv-in-2-minutes-7b6f29518ff3

